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Transprot 
sector

Automobiles

Introduction: Background

CO2 Emissions of Automobiles is Very Huge

Many Conturies and Regisions Promote EVs



Increasing rate of load peak
Oct. 2023: 46,664 kW / 9,861,000 kW = 0.47%

2025: 90, 000kW / 9,861,000 kW = 9.13%

2050: 1,833,964 kW / 9,861,000 kW = 18.60%

The Development of EV in Hong Kong has 3 Milestones

Introduction: Milestones and Challenges

Many EVs Randomly Charging Cause Impact



Calculation of load peak with unmanaged charging
n Max conventional electricity load in 2021

n CLP Power: 7,477,000 kW
n HKE: 2,384,000 kW
n Total: 9,861,000 kW, assume that the total load peak will not change in the future

n Amount of charging in HK 
n Sept. 2023: 7,085 EV chargers for public use, including 3,950 medium chargers, 1,092 quick chargers and other 2,043 

chargers are not specified, we assume they are medium chargers.
n 2025: 150,000 for private charger and 5,000 for public charger
n 2050: By Oct. 2023, the total number of EVs is 70,701, 7.7% of the total number of vehicles. So, total EVs in 2050 can 

be assumpted as 70,701 / 7.7% = 918,195. Let’s assume that 3 vehicles share one private charger, which is 918,195 / 3 
= 306,065. Let’s assume that the public chargers are 10,000

n Max EV charging load .
n Average charging power for private charger: 220 V * 16 A = 7 kW
n Average charging power for public charger: 380 V * 32 A = 12 kW
n Charging simultaneity factor for private charger : 0.8
n Charging simultaneity factor for public charger : 1.0
n Oct. 2023: (3,950 + 2,043) * 7 kW * 0.8 + 1,092 * 12 kW * 1.0 = 33,560 kW + 13,104 kW = 46,664 kW
n 2025: 150,000 * 7 kW * 0.8 + 5,000 * 12 kW * 1.0 = 840,000 kW + 60,000 kW = 900, 000kW
n 2050: 306,065 * 7 kW * 0.8 + 10,000 * 12 kW * 1.0 = 1,713,964 kW + 120,000 kW = 1,833,964 kW

n Load peak lift rate
n Oct. 2023: 46,664 kW / 9,861,000 kW = 0.47%
n 2025: 90, 000kW / 9,861,000 kW = 9.13%
n 2050: 1,833,964 kW / 9,861,000 kW = 18.60%

Hong Kong: The Facts - Power and Gas Supplies (2022 Jul) (www.gov.hk)

Technical Guidelines on Charging Facilities for Electric Vehicles (emsd.gov.hk)
EVRoadmapEng17_3.indd (eeb.gov.hk)
Promotion of Electric Vehicles | Environmental Protection Department (epd.gov.hk)

Introduction: Milestones and Challenges

https://www.emsd.gov.hk/filemanager/en/content_444/Charging_Facilities_Electric_Vehicles.pdf
https://www.gov.hk/en/about/abouthk/factsheets/docs/power_gas_supplies.pdf
https://www.emsd.gov.hk/filemanager/en/content_444/Charging_Facilities_Electric_Vehicles.pdf
https://www.eeb.gov.hk/sites/default/files/pdf/EV_roadmap_eng.pdf
https://www.epd.gov.hk/epd/english/environmentinhk/air/promotion_ev/promotion_ev.html


How will the existing power grid cope with the impact 
of mass access to EVs?

Vehicle-to-grid (V2G) technology

Kempton, Willett, and Jasna Tomić. "Vehicle-to-grid power fundamentals: Calculating capacity and net revenue." Journal of 
power sources 144.1 (2005): 268-279.

Introduction: Current Solution and Privacy Leakage Issue



Shang, Yitong, et al. "Computational performance analysis for centralized coordinated charging methods of plug-in electric 
vehicles: From the grid operator perspective." International Transactions on Electrical Energy Systems 30.2 (2020): e12229.

s.t.

V2G Problem of Minimizing Load Variance 

Introduction: Current Solution and Computational Burden Issue

Transform from Centralized to Distributed
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Background
EV charging randomly 

Current solution
V2G

Potential issues
Privacy leakage and 
computational complexity

Proposed framework
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High Computational Performance: A Novel Framework

Design a Distributed Framework: Internet of smart charging points (ISCP)
ü Three layers
ü One key point
ü Three advantages

One EV one problem by one charger

The overall problem is decomposed into 
multiple sub-problems



Distributed Load Flatting Strategy for One EV in ISCP

High Computational Performance: Strategy 1, Single Objective Function



n Peak-shaving by 11.98% 
n Valley-filling by 12.68%

n About 0.4s for 3000 EVs under ISCP
n More than 250s for 120 EVs by centralized scheduling

Shang, Y., et al. "A centralized vehicle-to-grid scheme with distributed computing capacity engaging internet of smart charging 
points: case study." International Journal of Energy Research 45.1 (2021): 841-863.

High Computational Performance: Results of Strategy 1

The Dispatch Results are Satisfied (Green Line) and the Computational Performance is Excellent



High Computational Performance: Strategy 2, Double Objective Functions

Distributed Load Flatting & PV Self-consumption Strategy for One EV in ISCP



High Computational Performance: Strategy 2, Double Objective Functions

Distributed Load Flatting & PV Self-consumption Strategy for One EV in ISCP 
ü When PV output occors, it is different from the last single objective
ü The strategy is EV charging from the highest PV output to the lowest PV output
ü Use two weight factors to describe the importance of objective 

W1 W2



Condition Case 1 Case 2 Case 3

Power flow (s) 0.000287 0.000205 0.000299

No Power flow (s) 0.000361 0.000394 0.000532

n 0.4s for 3000 EVs under ISCP with efficient algorithm, O(NTlog2(T))
n 35s for 3000 EVs under ISCP with traditional algorithm, interior point method, O(NT3)
n 250s for 120 EVs by centralized scheduling, O((NT)3)
n Scheduling one EV at one-time slot shows microsecond basis

Execution time of the proposed scheme for single PEV in a 
single time interval

Shang, Y., et al. "Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling 
optimal dispatching between electric vehicles and power grids." Applied Energy 278 (2020): 115640.

High Computational Performance: Computational Results of Strategy 2

The Computational Performance is also Excellent, and Scheduling One EV Shows Microsecond Basis



Modified distribution grid of SUSTech campus

Energy consumption node Charging station node

High Computational Performance: Dispatching Setting of Strategy 2



n Peak-shaving and valley-filling by 17.54% and 12.42%
n PV self-consumption by V2G is 82.72%, which is 258.74% more than unmanaged charging
n No voltage exceeds limit in ISCP scheme

High Computational Performance: Dispatching Results of Strategy 2

The Dispatch Results are Satisfied, Expecially in PV self-consumption 
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Strategy
One EV, one probelm, 
conducted by one charger

Objective
Load flatting and PV 
self-consumption

Advantages
Achieve good performance 
in a distributed manner

Potential issue
Require precise prediction 
of future state in advance.
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Shang, Y., et al. "ISCP-Data: a vehicle-to-grid dataset for commercial center and its machine learning application." 
2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2021.

Conventional load 
https://data.mendeley.com/datasets/n85kwcgt7t/1 

PV output 
https://solcast.com

EV charging data
https://platform.elaad.io

High Information Security 1: Paradigm and Dataset

Handling Uncertainties of Future Data by Data-driven Method

Flowchart of offline learning and online dispatching

ü Offline learning: utilize the foregone future 
data from the dataset to compute label, and 
utilize the historical, current data, and label 
to train a learning model.

ü Online dispatching: employ the end-to-end 
deep learning model conditioned on 
historical and current data to directly make 
scheduling decisions under uncertainties.



Structure of RNN Structure of LSTM

Overall network structure of the multichannel dual-task forecasting model.

Avoid gradient 
dependencies

High Information Security 1: Deep Learning Model

Utilizing LSTM (a Variant of Recurrent Neural Network) and Attention Mechanism for Time 
Sequence Data



Method Computation time (s) Handle 
uncertainties

Privacy-
preserving

Scenarios 
adaptability80 EVs 1000 EVs

Con1 96.3064 -- × × ×

Con2 0.7408 12.9258 × √ ×

LSTM 0.0161 1.9784 √ √ √

Qualitative analysis for different methods

Shang, Y., et al. "Achieving efficient and adaptable dispatching for vehicle-to-grid using distributed edge computing 
and attention-based LSTM." IEEE Transactions on Industrial Informatics 18.10 (2021): 6915-6926.

High Information Security 1: Results of Deep Learning Model



Solution 2: data-driven method 

Past issue 2: uncertainties handling arising 
from unknown future parameters

Solution 1: distributed edge computing

Past issues 1: EV users’ privacy & 
computational complexity

New issue: digital asset leakage 
due to restricted data at charging 
stations

High Information Security 2: Federated Learning for Handling Digital Asset Leakage

Local 
dataset

Cloud 
server



Type model Accuracy Precision Recall F1-score

FedISCP

FedAvg 0.83267 0.80052 0.83267 0.83008

Avg_cs1 0.83000 0.79093 0.83000 0.82739

Avg_cs2 0.82900 0.80903 0.82900 0.82580

Avg_cs3 0.83900 0.80160 0.83900 0.83705

CenISCP

CenAgg 0.86300 0.83322 0.86300 0.86198

Cen_cs1 0.81400 0.77427 0.81400 0.80707

Cen_cs2 0.81800 0.80201 0.81800 0.81414

Cen_cs3 0.82700 0.77454 0.82700 0.82541

Method Group Accuracy Precision Recall F1-score

Non --- 0.83267 0.80052 0.83267 0.83008

Spatial 
based

1 0.89667 0.85772 0.89667 0.89567

2 0.70833 0.53470 0.70833 0.69844

3 0.88167 0.85188 0.88167 0.88157

Temporal 
based

1 0.76700 0.71523 0.76700 0.75144

2 0.93400 0.82319 0.93400 0.93146

3 0.95500 0.81908 0.95500 0.95163

Training results of federated and centralized learning

Results with different clustering methods

High Information Security 2: Results of Federated Learning



Method Number Accuracy Precision Recall F1-score

Non-
cluster

3 0.78760 0.59906 0.78760 0.74965

5 0.79370 0.69613 0.79370 0.77434

10 0.79970 0.71754 0.79970 0.77980

15 0.79250 0.68735 0.79250 0.76929

20 0.79130 0.64594 0.79130 0.76000
Time-
based

3 0.94880 0.69503 0.94880 0.93962

5 0.94820 0.69453 0.9482 0.93903

10 0.94790 0.69430 0.94790 0.93974

15 0.94820 0.69451 0.94820 0.93903

20 0.94830 0.69468 0.94830 0.93913

Training results for randomly selecting to participate in federated 
learning (20 CSs in total)

Shang, Y., et al. "Secure and Efficient V2G Scheme through Edge Computing and Federated Learning." 2022 4th International 
Conference on Smart Power & Internet Energy Systems (SPIES). IEEE, 2022. (Best Paper Award)
Shang, Y., et al. “FedPT-V2G: Security Enhanced Federated Transformer Learning for Real-time V2G Dispatch with Non-IID Data.” 
Applied Energy. (In Second Round Review)
Shang, Y., et al. “An Information Security Solution for Vehicle-to-grid Scheduling by Distributed Edge Computing and Federated 
Deep Learning.” IEEE Transactions on Industrial Applications. (In Second Round Review)

Training time for randomly selecting to participate in federated 
learning (20 CSs in total)

Random number 3 5 10 15 20

Training time (s) 7864 12654 24714 36341 45216

Problem 1: Different data sample size and differnert 
data distribution. Training results need to be 

improved.

Problem 2: Need therotical proof of convergence in 
federated learning

Current work: federated learning for V2G scheduling 
with Non-IID Data

High Information Security 2: Results of Federated Learning

Randomly Selecting Method can Guarantee the Training Performace and Decrease Training Time
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Dataset
Real-world data

Handling uncertainties
LSTM+attention 

Protected data asset
Federated learning

Next work
Cyber-physical-system 
verification
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High Stable Cyber-Physical-System Verification: Architecture 

Cyber-physical-system of ISCP framework Data transmission and computational process in ISCP 

Analysing and Setting of Network Communication in ISCP, which Has Three Parts
ü Distributed computing for Privacy-preserving of EV users
ü Security checking of of power flow for Privacy-preserving of Grid 



High Stable Cyber-Physical-System Verification: Small-world Netork

Small-world Network
ü Based on 6 degree theroy
ü Low wring cost
ü Low latency

Description for different networks

Network typology of ISCP utilizing smart-world network



Network topology Lattice (K=2) Lattice (K=6) Small world Fully meshed

Delay (s) 53.7149 18.6315 0.590653 0.109501

Wring cost 3×103 9×103 9×103 4.4985×106

Comparison among different topologies concerning communication efficiency and wring cost

Shang, Y., et al. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for 
vehicle-to-grid operation." Applied Energy 303 (2021): 117595.

High Stable Cyber-Physical-System Verification: Netork Simulation

Analysing Different Scenirios, Find Suitable Parameters, and Simulate the Communication in ISCP

Less than 1 s



Current work: software verification for ISCP 
framework

Future work: scale-down hardware 
verification for ISCP 

Future work: Multi-block ADMM for distributed V2G based on scale-down 
hardware verfication 

For more about ADMM, please refer to homepage of Prof. He Bingsheng
http://maths.nju.edu.cn/~hebma/

Dispaly screen

Six chargers

Communication 
station

High Stable Cyber-Physical-System Verification: Next Work



Work summary



Looking Ahead



Thank You!
Yitong SHANG
ytshang@ust.hk

Sincere blessings to colleagues 
in MESPO group!


